

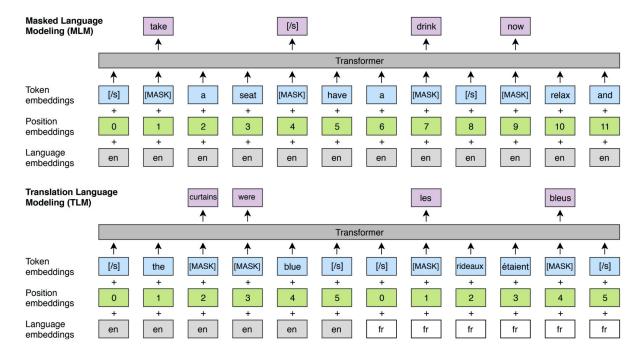
PARADISE: Exploiting Parallel Data for Multilingual Sequence-to-Sequence Pretraining

Machel Reid (UTokyo) and Mikel Artetxe (Facebook AI)

Paper: <u>https://arxiv.org/abs/2108.01887</u> Code: <u>https://github.com/machelreid/paradise</u>

> Machel Reid October 7th 2021 Facebook NLP Summit

Multilingual Pre-trained LMs (e.g. XLM*, mBERT, etc...)

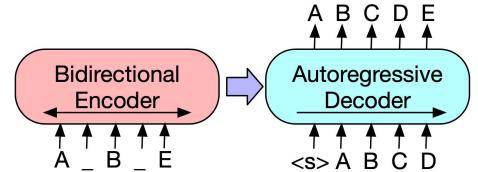


Generally, a variant of BERT-style (MLM pre-training) with a Transformer encoder (and sometimes using parallel data -- as shown above)

BART: Introducing sequence-to-sequence pre-training

- Extends the masked language modeling paradigm of BERT, but to encoder decoder models

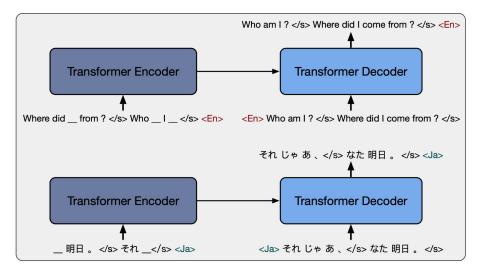
 Improved performance on generative tasks



mBART: Multilingual Sequence-to-Sequence Pre-training

- Extension of BART, however with multilingual data

 Tested on downstream machine translation/showing large gains over random initialization

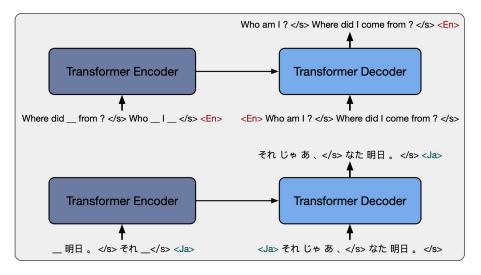


Multilingual Denoising Pre-Training (mBART)

mBART: Multilingual Sequence-to-Sequence Pre-training

- Extension of BART, however with multilingual data

- Tested on downstream machine translation/showing large gains over random initialization
- (i.e. parallel information only at fine-tuning)



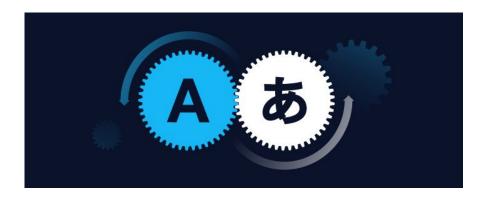
Multilingual Denoising Pre-Training (mBART)

But, can we use parallel information help sequence-to-sequence **pre-training**?

Enters PARADISE!

Big Ideas

- We look at ways of integrating parallel information/data into the pre-training process



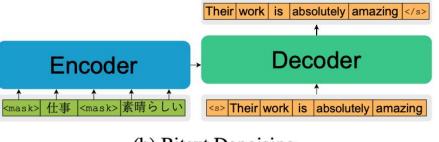
Dictionaries

Bitext

Bitext Denoising

- Using sentence-level machine translation data

 Token masking as noise to prevent overfitting to small datasets (e.g. En-Vi 100k examples)

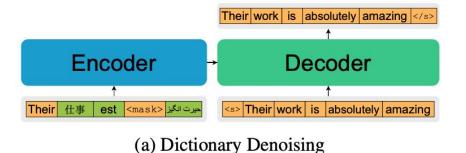


(b) Bitext Denoising

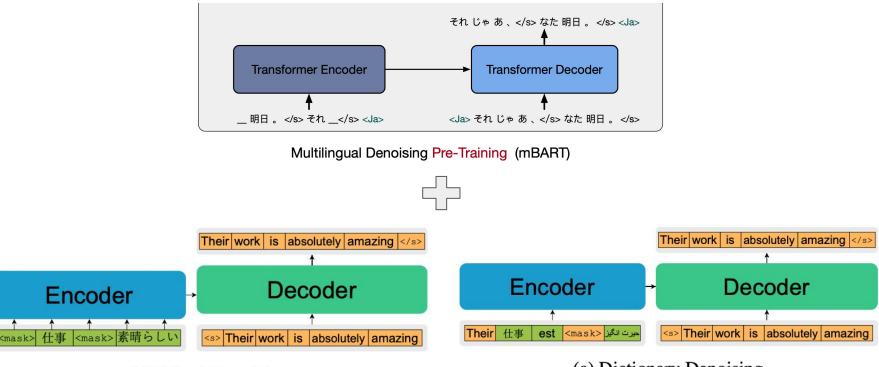
Dictionary Denoising

- Uses a multilingual dictionary
 - (which we can construct by using multiple English-XX bilingual dictionaries with English as a pivot language)

 Corrupt input by replacing tokens according to this multilingual dictionary and learning to correct this



Objectives



(b) Bitext Denoising

(a) Dictionary Denoising

An analogy with human second+ language learning

Learning languages with - a bunch of books in different languages

Learning language with:

- bunch of books in different
- languages
- a dictionary
- some example sentences

An analogy with human second+ language learning

Learning language with:

- bunch of books in different

languages

- a dictionary
- a some example sentences

Really important! You can add parallel info at scale really cheaply!

An analogy with human second+ language learning

Learning language with:

- bunch of books in different

languages

- a dictionary
- a some example sentences

Really important! You can add parallel info at scale really cheaply!

This is why language dictionaries exist!

Experiments & Results

Training details

• Trained on 20 languages

• On 32 V100 (16GB) GPUs for one day [much less compute than prev. methods!] (196M param. model)

Uses (81-95GB of data -- depending on configuration)
With (9-23 GB of parallel data included)

Downstream Tasks

- Machine Translation (10 lang. Pairs, 20 directions)
- PAWS-X
- XNLI

Machine Translation Results

Languages Data Source	85-010.05	-Vi LT15		-Tr (T17	5. 57.05	-Ja LT17	En IWS	-Ar LT17	En- FLo			-Ro T16	En- FLo	~-	En II	-Ні ГВ		-Es IT13	En WM	
Size	13	3K	20	7K	22	3K	25	0K	564	K	60	8K	647	ΥK	1.5	6M	15	M	41	Μ
Direction	\leftarrow	\rightarrow																		
Random init.	23.6	24.8	12.2	9.5	10.4	12.3	27.5	16.9	7.6	4.3	34.0	34.3	7.2	1.2	10.9	14.2	32.1	31.4	37.0	38.9
mBART (ours)	29.1	31.5	21.3	15.8	15.7	17.3	32.1	19.2	10.3	6.1	34.3	34.9	11.0	2.7	20.2	19.0	29.8	30.4	36.0	38.2
PARADISE	30.0	32.6	23.5	17.2	17.2	19.2	35.3	21.1	13.7	7.9	35.9	36.5	14.0	3.7	23.6	20.7	32.6	32.7	37.8	39.8

Table 1: Machine translation results. Random initialization numbers taken from Liu et al. (2020).

Despite seeing the same data (incl. finetuning), adding parallel information at pre-training time helps when fine-tuning on machine translation.

MT Ablation

- Increased parallel data helps

- Dictionary noising is important! (+0.5 BLEU)
 - Especially on Hindi, Sinhala (with non-Latin scripts)

Lang. pair (En-XX)	Tr	Ro	Si	Hi	Es	Avg_{Δ}
mBART (ours)	15.8	34.9	2.7	19.0	30.4	$20.6_{\pm 0.0}$
PARADISE (w/o dict.)	16.8	36.2	3.2	20.5	32.4	$21.8_{+1.2}$
PARADISE	17.2	36.5	3.7	20.7	32.7	$22.2_{+1.6}$
PARADISE++	19.0	37.3	4.2	20.7	33.0	22.8 _{+2.2}
Lang. pair (XX-En)	Tr	Ro	Si	Hi	Es	Avg_{Δ}
mBART (ours)	21.3	34.3	11.0	20.2	29.8	$23.3_{\pm 0.0}$
PARADISE (w/o dict.)	23.2	35.6	13.2	22.3	31.6	$25.2_{+1.9}$
PARADISE	23.5	35.9	14.0	23.6	32.6	$25.9_{+2.6}$

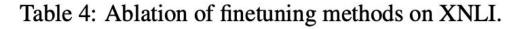
Table 2: Ablation results on machine translation.

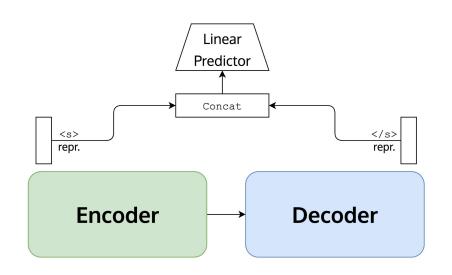
Classification

When fine-tuning on classification we propose a new method:

Concatenate encoder + decoder representations before class prediction

Model	avg	Δ
PARADISE++ (encoder-decoder)	74.3	
decoder-only	73.8	-0.5
encoder-only	73.8 72.0	-2.3





XNLI

Models	en	zh	es	de	ar	ur	ru	bg	el	fr	hi	SW	th	tr	vi	avg
Finetune a multilingual m	nodel c	on the l	English	h train	ing set	(ZERO	O-SHC	DT)								
mBART (ours)	77.5	68.0	70.7	68.8	66.7	62.2	68.6	72.1	69.6	70.1	63.4	62.6	66.6	65.0	69.7	68.1
PARADISE	83.4	73.8	77.6	76.0	72.4	65.1	74.0	74.4	73.2	77.7	70.6	66.2	70.4	72.1	75.3	73.5
PARADISE++ (w/o dict.)	83.3	72.9	77.2	75.7	64.4	66.9	73.4	74.8	75.7	77.7	68.5	67.4	71.0	73.3	75.0	73.1
PARADISE++	83.0	74.0	79.0	76.5	68.5	66.8	74.3	76.0	76.4	77.7	70.2	70.5	72.3	74.2	75.4	74.3
Finetune a multilingual m	nodel a	on all n	nachin	e trans	slated i	trainin	g sets	(TRAN	SLATI	E-TRA	IN-ALI	L)				
mBART (ours)	77.8	72.0	74.0	72.6	69.5	66.5	70.9	74.3	72.7	73.8	68.9	68.2	70.5	70.5	73.9	71.7
PARADISE	84.0	77.6	81.2	79.4	75.9	68.0	76.8	79.1	79.0	79.9	73.4	72.6	75.7	76.2	78.6	77.2
PARADISE++ (w/o dict.)	83.2	77.2	79.7	78.5	72.0	68.3	76.5	78.2	79.2	79.3	73.3	73.3	75.3	77.5	77.3	76.6
PARADISE++	84.8	78.3	81.7	80.5	76.0	70.6	78.8	80.4	81.3	80.6	74.9	74.2	77.3	78.4	79.2	78.5

Table 3: Accuracy of zero-shot crosslingual classification on the XNLI dataset.

PAWS-X

Model	de	en	es	fr	zh	Avg
mBERT	85.7	94.0	87.4	87.0	77.0	86.2
MMTE	85.1	93.1	87.2	86.9	75.9	85.6
mT5-small	86.2	92.2	86.1	86.6	77.9	85.8
AMBER	89.4	95.6	89.2	90.7	80.9	89.2
XLM-15	88.5	94.7	89.3	89.6	78.1	88.0
XLM-100	85.9	94.0	88.3	87.4	76.5	86.4
XLM-R-base	87.0	94.2	88.6	88.7	78.5	87.4
XLM-R-large	89.7	94.7	90.1	90.4	82.3	89.4
PARADISE++	89.1	94.3	89.6	90.6	82.3	89.2

Table 6: Accuracy of zero-shot cross-lingual classification on PAWS-X. Bold numbers highlight the highest scores across languages on the existing models (upper part) and PARADISE variants (bottom part). We source baseline results from Hu et al. (2020, 2021); Xue et al. (2021). Almost reaches XLM-R large level performance!

Comparison with popular models +

model	#Langs	Task	Params.	Est. GPU Days	Data (GB)	XNLI	PAWS-X	MT
mBERT (Devlin et al., 2019) [†]	104	MLM	179M (0.9x)	_	60	65.4	86.2	_
MMTE (Siddhant et al., 2019) [†]	102	Translation	375M (1.9x)	_	5000	67.4	85.6	_
mT5-small (Xue et al., 2021)	101	Eq. 1	300M (1.5x)	_	27000	67.5	85.8	_
mT6 (Chi et al., 2021a)	94	SC+PNAT+TSC	300M (1.5x)	40 (1.3x)	2120	64.7	86.6	
AMBER (Hu et al., 2021)	104	MLM+TLM	179M (0.9x)	1000 (31x)	100	71.6	89.2	
XLM-15 (Conneau and Lample, 2019) [‡]	15	MLM+TLM	250M (1.3x)	450 (14x)	100	72.6	88.0	
XLM-100 (Conneau and Lample, 2019) [†]	100	MLM	570M (2.9x)	640 (20x)	60	69.1	86.4	_
XLM-R-base (Conneau et al., 2020a) [‡]	100	MLM	270M (1.4x)	13K (406x)	2400	73.4	87.4	
XLM-R-large (Conneau et al., 2020a) [†]	100	MLM	550M (2.8x)	27K (844x)	2400	79.2	89.4	_
mBART (Liu et al., 2020)	25	Eq. 1	680M (3.5x)	4.5K (140x)	2400	—	_	23.5
mBART (ours)	20	Eq. 1	196M (1.0x)	32 (1.0x)	72	68.1	85.4	21.1
PARADISE	20	Eq. 1, 2, 3	196M (1.0x)	32 (1.0x)	81	73.5	89.0	23.1
PARADISE++	20	Eq. 1, 2, 3	196M (1.0x)	32 (1.0x)	95	74.3	89.2	23.8

Table 5: Comparison with prior work. † denotes results taken from Hu et al. (2020), and ‡ denotes results taken from Hu et al. (2021). The rest of the numbers are taken from the original papers.

Outperforms XLM-R-base (XTREME baseline) on these tasks using **400x less compute** and mT5 with **much less data**

Comparison with original mBART

- For most pairs PARADISE obtains competitive/better results (despite 140x less compute / 3.5 fewer params.)

- We only show significant losses on En-Es (with 13M pairs) where the architecture size (196M vs 660M params.) may not have had enough capacity (related to scaling laws, etc...)

Lang. Pair	En-Tr	En-Ro	En-Si	En-Hi	En-Es	Tr-En	Ro-En	Si-En	Hi-En
mBART (ours)	15.8	34.9	2.7	19.0	30.4	21.3	34.3	11.0	20.2
PARADISE (w/o dict.)	16.8	36.2	3.2	20.5	32.4	23.2	35.6	13.2	22.3
PARADISE	17.2	36.5	3.7	20.7	32.7	23.5	35.9	14.0	23.6
PARADISE++	19.0	37.3	4.2	20.7	33.0	24.9	36.8	15.1	23.5
mBART	17.8	37.7	3.3	20.8	34.0	22.5	37.8	13.7	23.5

Table 7: Ablation results on machine translation. Note that mBART is trained with 140x more compute and 3.5x more parameters.

Takeaways

Takeaways

- Use parallel information at pre-training (+ don't constrain parallel data to only translation data!)

- With dictionaries, you can add parallel information very cheaply + easy to scale!
 - Even helps at finetuning (in prelim. experiments) with 5% (in the case of our mBART) and 1-2% (for PARADISE) during XNLI finetuning

Interesting Future Questions

Interesting Future Questions

- How much performance is derived from **modeling** with parallel vs the data itself? (e.g. synthetic data vs gold data)

- What exactly changes when including parallel signal at pre-training versus just finetuning -- even with the same data?

- Do these improvements hold at scale? (or do they diminish?)

Thank you!

Q&A