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Who am I?

- Currently RS at Google Brain in London
- Working on multilinguality research + edit-models research



How do we create content?



Writing papers



Writing code



Contrast this with current language models…

Autoregressive generation



They have good performance and work for many things….

….but they’re very counter intuitive



With current autoregressive LMs

- We cannot revise text in an intuitive way.

- Iterative refinement is hard.

- This is an important task for that is simple for humans to perform but 
extremely difficult for models



Given this, I will go over some my work on editing

- Application-centric editing for text style transfer in “LEWIS: Levenshtein 
Editing for Unsupervised Text Style Transfer” ACL Findings 2021

- Learning to Model Editing Processes, Findings of EMNLP 2022

- New preprint! DiffusER: Discrete Diffusion via Edit-based Reconstruction 

https://arxiv.org/abs/2205.12374
https://arxiv.org/abs/2210.16886


Applying editing for style transfer



LEWIS: Levenshtein Editing for 
Unsupervised Text Style Transfer

Joint work with Victor Zhong (UW)



Text Style Transfer: Motivation & Problem Definition

Negative to Positive:

I had a terrible time… → I had a great time…

Positive to Negative:

The worst ribs I’ve ever had! → Probably the best ribs ever!



Many current style transfer approaches require fully 
regenerating large portions of the original sentence

These sentences have a large text overlap, so editing 
could be a good idea



The text style transfer task

POSITIVE: I had a really great time at the theater, they attended to all of my 
needs.

↓

NEGATIVE: I had a really terrible time at the theater, they ignored all my requests.



Benefits of editing

- Efficient

- Allows for content preservation + fluency preservation

- More precise control over the sequence transduction process



Levenshtein Editing

Predict Levenshtein operations {<ins>, <keep>, <repl>, <del>} and 
generate for <ins> and <repl> operations



Levenshtein Editing (cont.d)

Negative to Positive:

I had a terrible time… → I had a great time…

Positive to Negative:

The worst ribs I’ve ever had! → Probably the best ribs ever!



LEWIS

2 Steps:

1. Synthesizing pseudo-parallel 
data

2. Learn a Levenshtein editing 
model with a coarse-grained 
editor and fine-grained 
generator to modify style of 
text



Synthetic data generation

- Use classifier attention to replace style-specific text with the SLOT token
- Fill that text with both style-specific LMs to create pseudo-parallel data



Results

- LEWIS improves over previous work on human and automatic evaluation!
- With our synthetic parallel data, editing based methods work much better...



However, what if we can make editing not 
application-based, but more general?



Learning to Model Editing 
Processes

Joint with with Graham Neubig (CMU)



Wikipedia Edits



Why do we want to model it?

- Humans generate content iteratively (not in one pass -> GPT-style)



Why do we want to model it?

- Humans generate content iteratively (not in one pass -> GPT-style)



Why do we want to model it?

- Humans generate content iteratively (not in one pass -> GPT-style)

- Are there patterns when editing processes?



Problem Definition

- We want to model the likelihood of the current document by way of an entire 
sequence of document edits



Problem Definition: n-order editing

- We want to model the likelihood of the current document by way of an entire 
sequence of document edits, but we can simplify this to a Markov process 
(which is single step editing; Reid and Zhong., 2021)

- However, when modeling edit processes (the aim of this work), we look to 
include the context of previous revisions (controlled by n).



Problem Definition: Edit Operations

- Practically, we use edit operations (ei) (INSERT, DELETE, KEEP, REPLACE) to 
edit this and make this process more efficient:



Problem Definition: Edit Log Likelihood

- We can then use this formulation to define edit log-likelihood (which we use 
to train our model)



Problem Definition: Decomposed Log Likelihood
- We can also decompose edit log likelihood into the 

operation prediction:

- And operation-conditioned generation



Model: EditPro



Model: EditPro



Components

- Edit Encoder

- Edit Operation Prediction

- Generating Replacements and Insertions

- Encoding Edit History



Generating Replacements and Insertions

- E.g. we take a mean pool of replaced tokens and sum them with a REPLACE 

embedding and use that to initialize a decoder for that span



Edit-compressed history

- We use previous edit operations to to compress previous edit history into 

their separate spans of edits

- (Hard to explain here, so please refer to the paper!)



Data



WikiRevisions & CodeRevisions

- We propose the datasets with full document-level edit history for both 
natural language (WikiRevisions from Wikipedia) and code (CodeRevisions 
from Github)



Evaluation Metrics



Evaluation Metrics

- Edit Perplexity (ePPL), exponent of the NLL for both edits and generated 
outputs, normalized by length of both outputs
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Evaluation Metrics

- Edit Perplexity (ePPL), exponent of the NLL for both edits and generated 
outputs, normalized by length of both outputs

- Operation Perplexity (oPPL), exponentiated NLL of operation prediction

- Generation Perplexity (gPPL), exponentiated NLL of generating replaced 
or inserted spans (when compared with ground truth edit seq)



Experiments & Results



Tasks

- Edit Modeling

- Edit Classification

- Conditional Editing

- Edit-conditioned Generation



Edit Modeling

Extra order edit modeling helps! 



Edit Modeling

Extra order edit modeling helps! Knowing where text came from helps predict 
future iterations.



Downstream Tasks

Same findings hold, even for discriminative edit-based tasks



Example from sampling from a edit model

Not super fluent, but is likely to be 
an artefact of:

- Scale (small, undertrained 
model)

- Data: Wikipedia is a 
comparative cacophony to 
other forms of creation



But can we make this notion more general?



Introducing text + edit-based diffusion 
models!



DiffusER: Diffusion via Edit-based 
Reconstruction

Joint work with Vincent Hellendoorn, Graham Neubig @CMU

 go/diffuser



Setup

 go/diffuser



Most text generation models

Left-to-right

Pros: 

- Simple and effective setup

Cons:

- Hard to refine
- Not much flexibility when 

generating

 go/diffuser



Non-autoregressive models

E.g. CMLM/MLMs

Pros:

- Simple
- Effective
- Fast

Cons:

- Arguably even less flexibility
than AR models

 go/diffuser



Text diffusion models

 go/diffuser



Diffusion models have two components

1) Corruption (or forward process)

E.g. in images 

Full image → noise

2) Denoising (or backward process)

Generative Modeling

Noise → Full image [2006.11239] Denoising Diffusion Probabilistic Models 

 go/diffuser

https://arxiv.org/abs/2006.11239


Issues with diffusion models for text

- Unlike images, score-based generative modeling is not straightforward as 
there is no clear method on how to formulate diffusion for categorical 
distributions

- The corruption process for text-based models and hence the denoising 
process is also not straightforward

 go/diffuser



Previous work

Structured Denoising Diffusion Models in Discrete State-Spaces (i.e. using the 
BERT/CMLM objective in multiple steps) 

 go/diffuser

https://arxiv.org/abs/2107.03006


Previous work cont.d

Step-unrolled Denoising Autoencoders for Text Generation; SUNDAE (instead of 
using masks, replace iteratively using random text)

 go/diffuser

https://arxiv.org/abs/2112.06749


SUNDAE cont.d

- Pretty good MT performance

- However, cannot make use of 
flexible edit-operators; paradigm 
relatively inflexible compared to 
the ideal for edits

 go/diffuser



Ours

 go/diffuser



Issues with previous work

The main one there are too many restrictions placed on what is diffusion/what 
consists of diffusion etc…

1) E.g. for the MLM diffusion models, the model doesn’t actually learn to 
correct incorrect text -> just learns to fill masks 

2) For the SUNDAE model, it overcomes the first limitation, however it is quite 
restrictive in terms of the types of edits it can perform (essentially only 
replacement).

 go/diffuser



We aim to fix this by:

- We use the SUNDAE style of using randomly sampled text rather than 
<MASK>s (tackling problem 1)

- We also include autoregressive generation in this process (though arguably 
there could be a purely non autoregressive formulation of this) (this allows 
us to have compatibility with AR models) 

- We use Levenshtein edit operations (i.e. KEEP, DELETE, REPLACE, INSERT) to 
make the editing both more controllable and flexible.

 go/diffuser



Our corruption process is flexible + DELETE/INSERT are new

1) Extremely flexible, uses edit operations

Instead of simply replacing tokens we can perform the following 4 operations:

- KEEP (i.e. do nothing)
- REPLACE (i.e. replace a span of words with another random span of words — 

not length constraint)
- DELETE (i.e. delete a set of tokens, this means that they would have to be 

inserted in the next timestep)
- INSERT (i.e. randomly insert a set of tokens, this means that they would have 

to be deleted)

 go/diffuser



Edit-based Generation || Our corruption process

 go/diffuser



Our denoising process

Two step process:

1) Tagger -> we tag a corrupted sentence with the appropriate tags (i.e. 
replace, insert, delete, etc)

 go/diffuser
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1) Tagger -> we tag a corrupted sentence with the appropriate tags (i.e. 
replace, insert, delete, etc) -> similar to LEWIS

2) Generator: after tagging and summing tag embeddings and word 
embeddings, we generate using an autoregressive generator similar to CM3

I have a <repl:0> dog </repl:0> his name is <insert:0> </s> <repl:0> great </s> 
<insert:0> Jonathan </s>
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Our denoising process

Two step process:

1) Tagger -> we tag a corrupted sentence with the appropriate tags (i.e. 
replace, insert, delete, etc) -> similar to LEWIS

2) Generator: after tagging and summing tag embeddings and word 
embeddings, we generate using an autoregressive generator similar to CM3

I have a <repl:0> dog </repl:0> his name is <insert:0> </s> <repl:0> great dog </s> 
<insert:0> Jonathan </s>

I have a great dog his name is Jonathan

 go/diffuser



Generation process

- We perform 2d beam search, searching over 2 dimensions
- Sequence level dimension (as standard)
- Revision level dimension

- We can keep refining indefinitely, however we find 8-12 refinements 
work well.
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Sequence-level dimension



Generation process

- We perform 2d beam search, searching over 2 dimensions
- Sequence level dimension (as standard)
- Revision level dimension

- We can keep refining indefinitely, however we find 8-12 refinements 
work well.

 go/diffuser

Revision
dim

Sequence-level dimension



Decoder Initialization Techniques

Instead of initializing with continuous representations, we can actually initialize 
our decoder with discrete sequences



Quantitative Results

 go/diffuser

With no distilled data, 
performs almost as 
well as standard AR 
for the first time!

Without task-specific 
techniques, works 
well with style 
transfer



Example Generation



Ablations + Insights



Takeaways



Takeaways

- Text editing has a lot of promise and has been shown to be performant in 
certain situations but there is still a ways to go (LEWIS)

- A large drawback has been lack of data for style edits but with 
diffusion-inspired models we may be able to get there…

- But we have shown that we can incorporate this editing ability without 
compromising performance significantly and sometimes improving it!



Future Ideas



Improving Data Quality of Edits

- Issues with Wikipedia include:
- Conflicting views
- Spam
- Bots

- Could we get golden Overleaf/Google Docs data?



Classifier-guided DiffusER

- One large issue: the corruptions in DiffusER are random and are largely 
conditioned on the task objective (i.e. machine translation, summarization)

- But can we use classifiers to induce different types of edits/paths?



Using DiffusER style models for data augmentation

- Given a seed sequence you can sample iteratively to form different 
perturbations of the same sequence.



Future ideas

- Have a large scale pre-trained self-editing model 

- Ideally everyone should be using edit models!

- We need better data (e.g. Google Docs), where contributors are working 
towards a somewhat agreed goal to train better models

- Are there task-specific diffusion formulations that we could learn to 
combine?

- Ensembling large LMs/humans in the discrete space via iterative refinement 
(nice for API users; PEER paper does a great job in this direction!)



Thank you!



Q & A

Twitter: @machelreid
Email machelreid@google.com 

mailto:machelreid@google.com

